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SUMMARY

In this paper, we find E-optimal designs based on balanced block (BB) designs and
some partially balanced incomplete block designs with group divisible associate
scheme (GD PBIB) listed in Clatworthy (1973). As a result, we obtain partially
balanced block designs with group divisible associate scheme (GD PBB) having
equal or unequal treatment replications and equal or unequal block sizes (the
classical GD PBIB designs have only equal treatment replications and equal block
sizes).
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1. Preliminaries

In some biological and industrial experiments, there are situations involving
block designs with a small number of block sizes and treatment replications
and/or there are unequal treatment replications and block sizes. In practice, we
have to use optimal block designs, among which the E-optimal designs deserve
particular attention.

In the theory of experimental designs, E-optimality is often considered. Older
papers about E-optimality refer to classic block designs with a constant linear
model. More recent works take into consideration more complicated models and
furthermore they extend the designs, e.g. they deal with row-column designs. For
example E-optimal designs for linear, quadratic and cubic growth models with
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autocorrelated errors and with four or fewer time points from interval [0, 2] are
given in Moerbeek (2005). E-optimal designs for quadratic and cubic growth
curve models with correlated errors and with three and four time points on the
time the interval [0, 2] are considered by Filipiak and Szczepanska (2005).
Experiments with the same number of treatments, blocks and plots are considered
by Filipiak and Rézanski (2005), where it is assumed that the response to a
treatment is affected by other treatments, so the model of the experiment is an
interference model with neighbor effects. The aim of this paper is to identify the
structure of the left neighbor matrix of E-optimal design and to give a
construction method for such a design.

Bagchi (1996) showed that nested row-column designs having 2 X 4 arrays as
blocks and with treatments satisfying a rectangular association scheme with two
rows and an odd number of columns are E-optimal designs. Bagchi (2004) also
presented a general construction of group divisible (GD) designs and rectangular
designs by utilizing resolvable and “almost resolvable” balanced incomplete
block designs. As a special case, Bagchi (2004) obtained two classes of E-optimal
block designs: GD designs with 4, =4, +1 and rectangular designs with two
rows and 4, =4, —1=A4, +1, where two treatments occur together in exactly /;
blocks (i =1, 2 for GD design and i = 1, 2, 3 for rectangular design). The numbers
A; are called the coincidence numbers of the design. In the first class Bagchi
(2004) constructed a few new E-optimal GD designs with replication number
r212 and therefore in this paper we do not use the above designs (in
Clathworthy (1973), E-optimal GD designs have r <10).

Wallis (1996) showed equivalence between graphs and E-optimality. He gave
criteria for existing E-optimal block designs. Morgan (2007) showed equivalence
between designs and graphs finding 89 E-optimal block designs for up to 15
treatments. The problem of constructing E-optimal designs from an irregular BIB
designs setting is studied by Morgan and Reck (2007). They found an E-optimal
design for 15 treatments in 21 blocks of size 5. E-optimality for three treatments
in an n-way heterogeneity setting is studied by Parvu and Morgan (2007).
Brzeskwiniewicz (1989, 1995) presented a certain E-optimality criterion for block
designs and two-way elimination of heterogeneity designs, respectively.

In the statistical literature investigating E-optimality of block designs, the most
frequently analysed designs are those with equal replications of treatments and
equal block sizes. Bagchi (2004) discussed GD designs and rectangular designs.
In the present paper, we construct E-optimal designs, where the treatment
replications do not have to be equal and the designs do not have to be of equal
block size.

Suppose there are p designs for which the treatments can be divided into v,
groups of v, distinct treatments each. We show that if Nj, for A =1,..., p; are
incidence matrices of p; balanced block (BB) designs and Nh for
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h= py+1..,p are incidence matrices of p— p; partially balanced block
designs with group divisible associate scheme (GD PBIB) design with 4, =4, +1
(or with 4, =4, +1>1, vo =2 and/or with Ay =4; +2, v; =2), then a block
design with the incidence matrix N= (NI,NZ, N, Np +1,...,Np) is an E-
optimal partially balanced block design with group Amsﬂ!)le associate scheme
(GD PBB) design. The design with the incidence matrix N can have unequal

replications and unequal block sizes.

2. Introduction

Let Q, ki,...kp denote the collection of all connected block designs with v
treatments arranged in b blocks of size ki,...,kp, , respectively. The well-known
C-matrix (cf. e.g. Constantine, 1981), when design d is used, is defined by

Cd = diag{rdl,...,rdv}—Nd dlag &(;11,,](;; }Nld , (2.1)

where ry; is the number of replications of the ith treatment in d (i =1,2,...,v),
kg is the jth block size in d (j=12....b) and Ny =(nz;), with ngy

signifying how many times treatment i appears in block j. For a design
de Qv,kl,...,kb let O =hg0<Hp S‘"S‘udv—l denote the eigenvalues of its C-

matrix C .

A design d'€Q,, ;, is called E-optimal if 4, iy = =y, > p, for all designs
de Q, ki, Note that 4, is the smallest positive eigenvalue of the C
matrix. The foll%wmg lemma (see Kiefer (1959), Ehrenfeld (1955), Constantine
(1981)) gives statistical meaning to an E-optimal design.

*

Lemma 2.1. A design d is E-optimal if and only if the maximum variance
among all best linear ='Embiased estimators of normalized linear contrasts of design
d is smallest under d .

Definition 2.1. A GD PBIB design (see, ¢.g. Raghavarao, 1971) is a block design
based on v =vjv) treatments (being arranged into v; groups of v, treatments
each), consisting of b blocks of size k (k<v), such that each treatment occurs in r
blocks. In the GD PBIB design, two treatments that belong to the same group are
first associates and two treatments that belong to different groups are second
associates. Two treatments which are i-th associates occur together in exactly A;
blocks (i = 1, 2). Each treatment has exactly n; i-th associates, where n; = v2— -1
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and n, = (v[—l)vz. The numbers v, b, r, k, Ay, A, Vi, Vo are called the
parameters of the design.

If Nis a (v X b) incidence matrix of a GD PBIB design, then from the above
definition ~we have NN =rAg+4A +HA,, where Aj=I,,
A=, ®(J% - lu_,), Ay =@, -1, )®4J,, . while 1 is an identity matrix
of order x, J x 18 an (xXx)-matrix of ones and ® denotes the Kronecker
product of matrices.

The construction of GD PBIB designs consists of finding a binary incidence
matrix N satisfying the above condition.

The matrix C of a GD PBIB design can be expressed as:

C = 4Py + wiPy + ;P (2.2)

where 4y =0, 44 = (r(k - 1)+/11 )k~1 s My = vﬂgk_l are the eigenvalues of C
with multiplicities @ =1, o1 =vj(v; —1) and @, = v; —1, respectively, and

Po=v7y,, Pr=h, ®0,, —v; ). P =01, -, @3,

A block design satisfying condition (2.2) is called a partially balanced block
design with an association scheme of group divisible (GD PBB) design. It is
known (cf. Kageyama 1974, Brzeskwiniewicz, 1989) that a GD PBB design with
a constant block size has equal treatment replications and therefore it is a GD
PBIB design. Thus, a GD PBIB design is a special case of GD PBB design.

Definition 2.2. A balanced incomplete block (BIB) design (see Raghavarao,
1971) is an arrangement of v treatments in b blocks of sizes k such that every
treatment occurs r times and every pair of distinct treatments is contained in A

blocks. The numbers v, b, r, k and A are called the parameters of the BIB design.

The C-matrix of a BIB design can be expressed as:
_ -1
C=ul,-v 1, |, 2.3)

where 4 = (n—b)(v -l)—1 with n =vr=kb.

A block design satisfying condition (2.3) is called balanced block design (BB)
design. It is worth noting (cf. Kageyama 1974) that a BB design with a constant
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block size has equal treatment replications and therefore it is a BIB design. Thus a
BIB design is a special case of BB design.
Kageyama (1974) has shown that for odd ¢t matrices

Tesnys2 0p 1
N=| Oy2 T 1

1t1,(t+1)/2 It 0,

N — 1’t+2 0;)
N_(lt+2 N 2.4)

and

are incidence matrices of BB designs with parameters:
v=t+2,b=(+1)/2+t+1,r =((t+1)/2+1,t+1,((z+1)/2+1)1, )
k = ((t+1)1'(,+1),2, 2-1',+1)' and =143, b =(t+1)/2+2+3,

F= (z+2,(t+1)/2+2,t+2,((z+1)/2+2)1,'),
k= (2'1lt+2s (t+1)1’(t+1)/2’ 2'1't+1) ,

respectively, where I denotes the vector of treatment replications, K denotes the
vector of block sizes, 1, (1)) is a column (row) vector of x ones and 0 v ( O'x) is

a column vector of x zeros.

3. Results
The following is a condition for E-optimality of GD PBB designs.

Theorem 3.1. Let N, for 2 =1,2,..., p; be incidence matrices of BB designs
with parameters v, by, ry, K; and let Ny for h=p; +1L, pi+2,..,p be
incidence matrices of GD PBIB designs with parameters v, by, 1y, k., Ay,
Ay, . If the GD PBIB designs are E-optimal and A“hl are the smallest positive
eigenvalugs of the matrices C,, and if there exists a vector q# 0 such that

Cxq = 4319, then

N=(N;,Ns...N, N, 11...N,,) 3.1)
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is the incidence matrix of an E-optimal GD PBB design d with parameters v,

b= th r—Zrh+ Zrh v

h=1 h=p, +1

’ P
’ ’ ’ ’ * *
k =(k1,...,kp1 ’kpl+11bp1+l ""’kp1bp ) , and M = Z,uhl .

P
Proof. From (3.1) and (2.1) we have C:ZCh , where C;, are defined in (2.3)

h=|

for h=12,..., py and in (2.2) for h= p; +1, p; +2,..., p, respectively. Hence

’ 4
C,q= ,u;lq and Cq= Z 4,,9= g . This completes the proof. [ |

h=|

Jacroux (1980) showed that any GD PBIB design with

Ay =2y +1 (3.2)
is an E-optimal design and
. r(k—1)+
== ( k) 4 .

Jacroux (1983) showed also that any GD PBIB design with

=Ay+1land vy =2 (3.3)

. k-1)+
is an E-optimal design with g = 4 :i—k)—jl .

In Table 1, we present reference numbers of GD PBIB designs from the
catalogue of Clatworthy (1973) satisfying (3.2) and/or (3.3).
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Table 1. Reference number of GD PBIB designs with Ap=Aj+1 (i) or Aj=Ap+1 and vj=2 (ii) from
catalogue of the Clatworthy (1973)

reference number (i) or (ii)

3, 10, 18, 24, 27, 29, 34, 36, 38, 39, 40, 41, 46, 52, 54, 58, 62, 70, 78, 79,
81, 86, 88, 90, 91, 92, 93, 96, 101, 111, 112, 114, 117, 122, 125, 128,

R 129, 130, 134, 145, 150, 153, 161, 162, 163, 176, 183, 191, 201, 202, @

205
1, 6, 16, 20, 32, 43, 74, 94, 98, 141, 164 (i)
1,6,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 26, 28, 30, 31, 32, 33,

SR 34, 35, 38, 41, 44, 46, 48, 49, 50, 51, 58, 60, 62, 63, 64, 65, 68, 71, 75, (@)

77,78, 79, 87, 88, 89, 90, 96, 97, 98, 104, 105, 110

From this and from Theorem 3.1 we obtain the following corollary.

Corollary 3.1. If in Theorem 3.1 the matrices Nj,, h = p; +1,pp +2,...,p are

incidence matrices of GD PBIB with (3.2) and/or with (3.3), then (3.1) is an
incidence matrix of an E-optimal GD PBB design and

r(kp, —1)+ Ay,
ky, '

" P " 14
ﬂIZZﬂh1+ Z

h=1 h=p, +1
Note that g€ C(P; ), where C(P;) is a column space of P;.
Cheng (1980) showed that any GD PBIB design with
A=Ay +1>1and vy =2 (3.4)

is an E-optimal design with

k-1)+A; -2
=y =1t )kl :

In Table 2 we present reference numbers of GD PBIB designs from the
catalogue of Clatworthy (1973) satisfying (3.4).
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Table 2. Reference number of GD PBIB designs with A=A2+1 and vp=2 from catalogue of the

Clatworthy (1973)
reference number
R 1,6, 16, 19, 30, 37, 42, 48, 71, 89, 97, 109, 132, 140, 186

S 1, 18, 51,98

From this and from Theorem 3.1 the following results:

Corollary 3.2. If in Theorem 3.1 the matrices Nj,, h=p; +1, py +2,..., p are

incidence matrices of a GD PBIB design with (3.4), then (3.1) is an incidence
matrix of an E-optimal GD PBB design with

D1 p _ -
,uik = z'u;;l + Z rh(kh 1)+ﬂlh 2 . Note that q & C(Pz).
h=1 h=p, +1 ki

4. Example

From (2.4) with ¢ =3, we take the incidence matrix

11111000000
10000110001
N, = 86?88??%5(1)(1) of a BB design with parameters v =6,
00010110100
00001110010

=111 =(54,541%) k= 215,41, 2.1,) and 4, =3.

1100 100100100
0011 10001000 1
Matrices Ny = § ¢ 7 [and Ny =01 00 5 9980 are
1001 001001001
0110 001100010

incidence matrices of GD PBIB no. SRI18 and SR6 from Table 1
respectively. For design SR18, we have v =6, b,=4, =2, k,=3, A, =
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Ay =1, #;,=1,33 and for design SR6, we have v=6, b3 =9, r,=3,

k,=2, A,=0, A,=1, p3;=15. From Corollary 3.1, it follows that
N = (N;, N,, N3) is an incidence matrix of an E-optimal GD PBB design

with parametefs v=6, b=24, r=r+51, k=(k,3:-1,2-1), 4 =583,
ie. Cq=yq for any qe C(P,).

5. Conclusion

In Theorem 3.1 we prove the E-optimality of several different types of block
designs that have unequally replicated treatments and unequal block sizes. In
statistical literature E-optimality of block design having only unequal block sizes
(see i.e. Lee and Jacroux, 1987) and only unequally replicated treatments (see i.e.
Jacroux, 1982). Theorem 3.1 can be applied to many designs which were
previously known to be E-optimal.
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